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Résumé

Dans les problèmes de �ltrage collaboratif nous disposons d'un ensemble de d'évaluations attri-
buées par des utilisateurs à des objets. L'objectif est alors de prédire les evaluations manquantes.
Il s'agit d'un problème de complétion de matrice. Une approche commune consiste à supposer
que la matrice des évaluations est de rang faible et de formuler le problème comme un pro-
blème d'optimisation bi-convexe, où la matrice des évaluations est approximée par le produit
de deux matrices avec un faible nombre de colonnes. En pratique nous pouvons avoir des mil-
lions d'utilisateurs, des dizaines de milliers d'objets et des millions d'évaluations visibles. C'est
pourquoi, les algorithmes en ligne, qui traitent une seule donnée d'apprentissage à chaque ité-
ration, sont plus adaptés. Récemment, certains algorithmes en ligne et stochastiques, comme
Stochastic Dual Coordinate Ascent et Stochastic Average Gradient, se sont révélés très e�caces
pour résoudre des problèmes d'apprentissages en grande dimension. Nous appliquons les idées
de ces méthodes dans le contexte plus général de l'apprentissage matriciel et nous proposons un
algorithme stochastique en ligne pour résoudre le problème du �ltrage collaboratif.



Abstract

In collaborative �ltering we have a collection of ratings that users give to items. Our goal is
to predict the rating for the user-item pairs that are not in the training dataset. We can see
this problem as a matrix completion problem. One popular approach is to assume that the
matrix is low rank and formulate the problem as a biconvex optimization problem using matrix
factorization. In practice we have millions of users, tens of thousands of items, and millions
of known ratings. Hence, online algorithms, that process one single training example at each
step, are more appealing. Recently several stochastic online algorithms, like Stochastic Dual

Coordinate Ascent and Stochastic Average Gradient, have shown good performance to solve
large scale machine learning optimization problems. We apply the main ideas of these methods
to the more general context of learning with matrices (instead of feature vectors) and we propose
a stochastic online algorithm for the collaborative �ltering problem.
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Learning low rank matrix models

1 Learning with matrices

1.1 Presentation

In machine learning, and more speci�cally in supervised learning, the prediction function is
in general parametrized by a vector, i.e. w . There are, however, some problems where the
prediction function is parametrized by a matrix. This is the case for multi-task learning [2] and
in cases where we model the prediction function as bilinear [5, 4]. The bilinear model is used
in relational learning [6] and in collaborative �ltering [15, 16, 8]. Thereafter we will focus on
learning with matrices, and more particularly on collaborative �ltering. One of the applications
of collaborative �ltering are recommender systems. Recommender systems provide product
recommendations for the customers according to their tastes. They have become extremely
common in E-commerce. Recently several algorithms have been proposed in [17] and [11] to
solve the corresponding optimization problems for such large matrices using stochastic and
distributed algorithms.

1.2 Collaborative �ltering

Description

In collaborative �ltering we have a collection of ratings (xij)(i,j)∈Ω, where xij is the rating that
a user i gave to an item j. The prediction function takes a pair (i, j) that is not in the data
set and predicts the rating. We can see this problem as a matrix completion problem where the
users are the rows and the items are the columns. We want to complete the matrix X based on
the observed ratings. A well-known example of this problem is the Net�ix Prize.

Net�ix Challenge

Net�ix is an online movie rental service where customers can rate the movies that they watch
according to a 1-to-5 rating scale. Figure 1.1 shows a simpli�ed example of the database.
Question marks represent missing ratings, meaning that the customer hasn't seen the movie.
Obviously, the main goal is to predict the missing ratings in order to make personalized movie
recommendations.
In October 2006, the company created an open competition, known as the Net�ix Prize [3], for
the best collaborative �ltering algorithm to predict user ratings for �lms. They o�ered a US1$
million prize for the best algorithm achieving at least a 10% improvement over their current
prediction algorithm. For this purpose, they provided a training data set of 100,480,507 ratings
that 480,189 users gave to 17,770 movies.
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Movie 1 Movie 2 Movie 3 Movie 4 Movie 5 Movie 6
User 1 ? ? ? 5 3 ?
User 2 ? 1 5 ? ? ?
User 3 ? 2 ? ? 1 3
User 4 2 ? 4 ? ? ?
User 5 4 ? 5 5 ? ?

Figure 1.1: Net�ix database example

2 Problem's characteristics

We will consider the collaborative �ltering problem. One of the challenges is to solve the problem
for very large matrices, as in practice we can have millions of users, ten of thousands of items,
and millions of known ratings.

2.1 Non convex formulation

In the case of collaborative �ltering it is easy to see that we can complete the matrix in many
di�erent ways : it is an ill-de�ned problem. A popular approach is to impose a low rank
constraint in order to obtain a well-de�ned problem. This constrains the complexity of the
model that �ts the data. In other words, we seek a simply explanation �tting the observed data.
A straightforward formulation of the problem can be written as

min
Y∈Mn×p

1

N

∑
(i,j)∈Ω

` (xij , yij) (1.1)

s.t. rank (Y ) ≤ r

where X = xij is the incomplete rating matrix, Ω is the set of user-rating pairs for which
the ratings are known, N the number of known ratings, the matrix Y = (yij) is the variable
of the problem and ` is the loss function. Due to the non-convexity of the rank constraint this
optimization problem is hard to solve. A classical convex relaxation of the problem is obtained
by replacing the rank constrain by a convex surrogate : the trace norm ‖Y ‖∗.

2.2 Convex relaxation with the trace norm

Instead of considering the number of non-zero singular values, i.e the rank, we consider the sum
of singular values, i.e. the trace norm

‖Y ‖∗ =

n∑
k=1

σk(Y ), (1.2)

where σk(Y ) is the kth largest singular value of Y. Since the trace norm is convex, by adding
a trace norm regularization, we obtain a relaxed problem that is convex

min
Y∈Mn×p

1

N

∑
(i,j)∈Ω

` (xij , yij) + λ‖Y ‖∗, (1.3)
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where xij , yij are the entries of matrices X and Y , and λ is the regularization parameter.
The formulation 1.3 is convex and can be optimized easily using the Singular Value Decomposi-
tion (SVD) of Y to calculate ‖Y ‖∗. [7] uses a proximal gradient algorithm for regularized least
squares problems. However SVD has to be computed at every iteration, which is costly, espe-
cially if we deal with large matrices. Indeed, in general, the complexity of an SVD computation
is O

(
min

(
np2, n2p

))
for an n× p matrix.

2.3 Biconvex formulation

A natural way to enforce that Y is a low rank matrix is to parametrize it as Y = UV >, with U
andV matrices with a small number of columns. It is easy to see that when this parametrization
of Y is injected in 1.1, it yield an optimization problem which is bi-convex, that is convex in U
when V is �xed, and convex in V when U is �xed. The problem is however not jointly convex
in U and V .
It is interesting to note that if one regularizes the squared Frobenius norm of U and V and
allows the number of columns of U andV to be large, the bi-convex problem becomes equivalent
to the convex problem

‖Y ‖∗ = inf
U ,V :Y=UV>

U∈Rn×k,V∈Rp×k for some k∈N

1

2

(
‖U ‖2Fro + ‖V ‖2Fro

)
, (1.4)

The quantity 1
2

(
‖U ‖2Fro + ‖V ‖2Fro

)
is much easier to calculate than trace norm since it is

half the squared sum of all U 's and V 's entries. Finally we can propose the following bi-convex
formulation :

min
U∈Mn×k,V∈Mp×k

1

N

∑
(i,j)∈Ω

`
(
xij ,u iv

>
j

)
+
λ

2

(
‖U ‖2Fro + ‖V ‖2Fro

)
(1.5)

where u i is the ith row of U , v j is the jth row of V . The main point of this formulation is
that we don't have to deal with the trace norm, which avoids us computing SVD. However we
pay the price of convexity. The problem becomes biconvex so we can get stuck in a local minima.
One popular approach to solve this optimization problem is Block Coordinate Descent (BCD) as
described in [7]. The link between the convex formulation with trace norm regularization and the
biconvex formulation is studied in [1]. They show that under some regularity conditions, when
the number of columns k is su�ciently large the two problems are equivalent, in the sense that
the biconvex problem has no local minimum and its global minimum corresponds to the global
minimum of the convex formulation. The link between trace norm and Frobenius norm is used
in [18] to propose a boosting approach for learning problems with trace norm regularization.
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Online learning

1 Regularized Empirical Risk Minimization

In supervised learning we are given a training data set (x 1, y1), (x 2, y2), ..., (xn, yn) ∈ Rp × R,
where x i are the inputs and yi the outputs. Our goal is to predict the output y for a new
input x not present in the training dataset. This comes down to �nding a prediction function
f that associates an output to every input. To do so we introduce a model for the prediction
function, typically a linear model, f(x ) = w>x , where w ∈ Rp is the parameter vector that
we want to learn from the training data set. We introduce a loss function ` : R × R → R+

that models the cost `(y, y′) of predicting y′ instead of y. For example, we can choose the
mean square loss, `(y, y′) = (y− y′)2. The quality of a prediction function f is given by the risk
R(f) = E[`(Y, f(X))], where the expectation is with respect to the joint probability distribution
of couples (X,Y ). Ideally we want to �nd w that minimizes this risk. Unfortunately we don't
know the joint probability distribution of pairs (X,Y ). Since we have a set of realizations (x i, yi)
we minimize instead the regularized empirical risk, to �nd a good estimate of w.

min
w∈Rp

1

n

n∑
i=1

φi

(
w>x i

)
+
λ

2
‖w‖2 (2.1)

where we add an `2-regularization for the feature vector w , with regularization parameter
λ, and where φi(y) = `(yi, y). in following chapters we will always consider convex and smooth
function φi.

2 Motivation

In the general context described in section 1, where we want learn a parameter vector, Stochastic
Gradient methods (Robbins and Monro, 1951), are classical algorithms for solving such large
scale supervised machine learning optimization problems. When we have a large number of
training examples and we are seeking a simple explanation, we expect some redundancy in
these examples. Stochastic Gradient methods take advantage of this characteristic using online
learning. In online learning, a random training example is drawn at each step and the parameter
is updated based on that example only, so each iteration cost is low. This allows us to process
a large amount of training examples. On the contrary, batch algorithms methods use the whole
set of training examples at each iteration to optimize the cost function. This is the case for
Full Gradient methods, where we have to process all data at each iteration. Such methods need
smaller number of iterations to converge but the iteration cost scales with number of training
examples in the set which can be prohibitive when this number is large.

Recently, the interest for stochastic gradient algorithms has been revived and several algo-
rithms based on online learning, such as the Stochastic Average Gradient Method in [12] and the
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Stochastic Dual Coordinate Ascent in [14], have shown good performance. We want to adapt
these new methods to build online stochastic algorithms to solve large scale collaborative �ltering
problem e�ciently. We �rst describe the main ideas behind this methods.

3 Stochastic Average Gradient Method (SAG)

The SAG method introduced in [12] combines the low iteration cost of the Stochastic Gradient

with the linear convergence rate of Full Gradient. As an example we consider an `2-regularized
empirical risk minimization problem

min
w∈Rp

1

n

n∑
i=1

φi

(
w>x i

)
+
λ

2
‖w‖2 (2.2)

where (x i, yi) ∈ Rp × R are the training examples and φi is the cost function associated to
the ith training example. The standard Stochastic Gradient iteration for this problem is

w t+1 = (1− λτk)w t − τkφ′it
(
w>x it

)
x it (2.3)

where τk is the step-size and it is the selected training example. The Full gradient iteration is
given by

w t+1 = (1− λτk)w t − τk
n

n∑
i=1

φ′i

(
w>x i

)
x i (2.4)

SAG uses a gradient that depends on each training example but at each step this gradient
is updated with respect to a single example.

w t+1 = (1− λτk)w t − τk
n

n∑
i=1

yti where yti =

{
φ′it
(
w>x it

)
x it if i = it

yt−1
i otherwise

(2.5)

4 Stochastic Dual Coordinate Ascent (SDCA)

4.1 Dual decomposition

When calculating the dual of a problem like 2.2 we note that a dual variable will be associated to
each training example and we will have n separate dual problems, with n the number of training
examples.

4.2 SDCA algorithm

The main idea in [14] is to take advantage of the dual decomposition, as in Dual Coordinate

Ascent (DCA) and consider a stochastic version of it. In a dual problem we will have a dual
variable associated to each training example. This encourages an online algorithm, where at each
iteration we process a single training example by optimizing the dual objective with respect to
its associated dual variable. More concretely, a dual problem of 2.2 is

max
α∈Rp

− 1

n

n∑
i=1

φ∗i (−αi)−
λ

2

∥∥∥∥∥ 1

nλ

n∑
i=1

αix i

∥∥∥∥∥
2

(2.6)
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where φ∗i is the Fenchel conjugate of φi de�ned as φ∗i (u) = maxz (zu− φi(z)). Since our
problem is convex, Karush-Kuhn-Tucker conditions say that if α∗ is an optimal solution of 2.6,
then

w∗ =
1

λn

n∑
i=1

α∗i x i (2.7)

is an optimal solution of 2.2. The main point of 2.7 is that each training example is associated
with its single dual variable. At each iteration of SDCA, one training example it is selected at
random, and the dual objective is optimized with respect to its corresponding dual variable αit .
Then the primal variable is updated. SDCA method uses iterations of the form

α
(t+1)
it

= α
(t)
it

+ ∆αit (2.8)

w (t+1) = w (t) +
1

nλ
∆αitx it (2.9)

where it is selected uniformly among the set {1, ..., n} and ∆αit maximizes− 1
nφ
∗
it

(−αit −∆αit)−
1
λ ‖
∑n

i=1 αix i + ∆αitx it‖
2. A duality gap can be calculated and used as a stopping criterion.

5 Alternating Direction Method of Multipliers (ADMM)

ADMM, presented in [13], combines the advantages of dual decomposition and the strong con-
vergence guarantees of the Method of Multipliers (MM). MM add an additional term to the
unconstrained objective

min
w ,z i∈Rp

1

n

n∑
i=1

φi

(
z>i x i

)
+
λ

2
‖w‖2 +

ρ

2

n∑
i=1

‖w − z i‖2 (2.10)

s.t z i = w ∀i ∈ {1, ..., n}

in order to obtain an augmented Lagrangian Lρ,

Lρ (w , z i,y) =
1

n

n∑
i=1

φi

(
z>i x i

)
+
λ

2
‖w‖2 +

n∑
i=1

y>i (w − z i) +
ρ

2

n∑
i=1

‖w − z i‖2 (2.11)

where ρ > 0 is called the penalty parameter. We note that L0 is the Lagrangian of the
standard problem. The bene�t of including the penalty term is that strict convexity or �niteness
of the loss functions φi is no longer required to converge. ADMM takes advantage of this
convergence properties and also exploit the dual decomposability by performing the iterations

z
(t+1)
i = arg min

(
1

n
φi

(
z>i x i

)
+ y

(t)>
i

(
w (t) − z i

)
+
ρ

2

∥∥∥w (t) − z i
∥∥∥2
)

(2.12)

w (t+1) = arg min

(
λ

2
‖w‖2 +

n∑
i=1

y
(t)>
i w +

ρ

2

∥∥∥w − z (t+1)
i

∥∥∥2
)

(2.13)

y
(t+1)
i = y

(t+1)
i + ρ

(
z

(t+1)
i −w (t+1)

)
(2.14)

We note that 2.12 can be computed in parallel for each i.
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Online matrix learning for matrix

completion

In this chapter we present our approach to adapt stochastic online learning algorithms to the
collaborative problem. As discussed in �rst chapter, the low rank constraint or its convex re-
laxation are di�cult or computationally expensive to accomodate. It appears that biconvex
formulation leads to alternate optimization algorithms with good results in literature. Further-
more this formulation is better adapted to online approaches. From now on we will consider the
biconvex formulation

min
U∈Mn×k,V∈Mp×k

P (U ,V ) =
1

N

∑
(i,j)∈Ω

φij

(
u iv

>
j

)
+
λ

2

(
‖U ‖2Fro + ‖V ‖2Fro

)
(3.1)

where u i is the ith row of U , v j is the jth row of V , φij(u) = ` (X i,j , u) is the cost
function associated to the training rating (i, j), and N is the number of visible ratings. We can
use an alternating optimization approach, solving alternatively the convex problem 3.1 where
the variable V (resp. U ) is �xed, noted PV (resp. PU ). As the problems PV and PU are
symmetrical we can focus on PV . We also notice that, when we �x V the minimisation can be
decomposed over U 's rows. If we de�ne PV ,i the problem PV where we �x all the rows ofU
but the ith

min
u i∈Rk

PV ,i (u i) =
1

N

∑
j∈Ωi

φij

(
u iv

>
j

)
+
λ

2
‖u i‖2, (3.2)

where Ωi is the set of movies j such that the (user,movie)-rating (i, j) is visible. To minimize
PV , we can minimize PV ,i's problems independently for di�erent U 's rows.

1 SDCA approach

1.1 Formulation

We apply SDCA to each PV ,i problem. First of all, we need to derive a dual, and to do so we
add a constraint to obtain the primal problem

min
u i∈Rk,(wij)j∈Ωi

∈R

1

N

∑
j∈Ωi

φij (wij) +
λ

2
‖u i‖2 (3.3)

s.t wij = u iv
>
j ∀j ∈ Ωi

and we derive a dual of this problem,
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max
(αij)j∈Ωi

∈R
− 1

N

∑
j∈Ωi

φ∗ij (−αij)−
λ

2

∥∥∥∥∥∥ 1

Nλ

∑
j∈Ωi

αijv j

∥∥∥∥∥∥
2

, (3.4)

We obtain the same formulation as in SDCA but this time we have a collection of problems
to solve. When optimizing main the problem 3.1 with respect to U , we have n independent
problems to optimize. Due to the bi-convexity, an optimal solution of primal 3.3 always depends
on matrix V . Indeed the condition ∂L

∂u i
= 0, where L is the Lagrangian of the primal problem

3.3, say that if we de�ne

u i(α) =
1

Nλ

∑
j∈Ωi

αijv j (3.5)

then if α∗ is an optimal solution of the dual problem, u i(α∗) is an optimal solution of the
primal problem.

1.2 Algorithm

An iteration of our SDCA algorithm consist of updating a certain αij where (i, j) is drawn
randomly from the training set. Then we update row u i. If we de�ne (βij)(i,j)∈Ω to be the dual
variables for the corresponding dual problem whereU is �xed the algorithm consists of updating
sequentially several αij and their corresponding rows u i then several βij and their corresponding
rows v j . At each step αij and βij are updated by ∆αij and ∆βij respectively, with

∆αij =

(
xij − αij − 1

Nλ

〈∑
j′∈Ωi

αij′v j′ , v j

〉)
1 +

‖vj‖2
Nλ

(3.6)

∆βij =

(
xij − βij − 1

Nλ

〈∑
i′∈Ωj

αi′ju i′ ,u i

〉)
1 +

‖uj‖2
Nλ

(3.7)

2 ADMM aproach

For ADMM, we consider the optimization problem :

min
u i∈Rk,(wij)j∈Ωi

∈R

1

N

∑
j∈Ωi

φij

(〈
z
j
i , v j

〉)
+
λ

2
‖u i‖2 + ρi

∑
j∈Ωi

∥∥∥z ji − u i∥∥∥2
(3.8)

s.t z
j
i = u i ∀j ∈ Ωi

Then, for each sub-problem PV ,i we have |Ωi| copies of u i. This algorithm uses more memory
than SDCA. The iterations are of the form

z
j(t+1)
i = arg min

(
1

N
φij

(
z
j>
i v j

)
+ y

j(t)>
i

(
u

(t)
i − z

j
i

)
+
ρi
2

∥∥∥u (t)
i − z i

∥∥∥2
)

(3.9)

u
(t+1)
i = arg min

λ
2
‖u i‖2 +

∑
j∈Ωi

y
j(t)>
i u i +

ρi
2

∑
j∈Ωi

∥∥∥u i − z j(t+1)
i

∥∥∥2

 (3.10)

y
j(t+1)
i = y

j(t+1)
i + ρi

(
z
j(t+1)
i − u (t+1)

i

)
(3.11)
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Results

1 Tests with generated data

For the tests we consider the quadratic loss φij(u) = 1
2(xij − u)2. We generate n × n random

matrices of rank k, and we reveal s% of the entries.

1.1 Behaviour of SDCA

Figure 4.1 and 4.3 show results for n = 100, k = 3, s = 50 and λ = 0.015. We achieve an
`2 error ‖X 0 −UV ‖2 / ‖X 0‖2 of 7 × 10−4, were X 0 is the generated matrix and UV our
approximation. Here we have 5000 visible entries. Since we perform 5 × 104 iterations, each
training example is visited 10 times in average. Figure 4.1 show primal and dual objectives in
function of the number of iterations.

Figure 4.1: results for n = 100, k = 3, s = 50 and λ = 0.015 : primal/dual objectives for SDCA

Figure 4.2 zooms on Figure 4.1 and we clearly see the alternate minimization. We iteratively
alternate a cycle where we optimize on U , then a cycle where we optimize on V . In each
cycle we consider a di�erent dual. The evaluated primal objective stays the same during the
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algorithm whereas a di�erent dual is considered at each cycle. Since we perform a dual ascent, in
a cycle, the dual objective increases at each iteration. This leads to a decrease, non necessarily
monotonic, of the primal objective.

Figure 4.2: Zoom of Figure 4.1

The log-duality gap in function of the number of iterations is illustrated in Figure 4.3, showing
that for each sub-problem we have a linear convergence rate.

Figure 4.3: results for n = 100, k = 3, s = 50 and λ = 0.015 :log-duality gaps for SDCA
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Figure 4.4 shows primal and dual objectives for SDCA for a small value of λ, i.e. 0.0001.
We notice the primal objective have some jumps when we alternate problems PV and PU .

Figure 4.4: results for n = 100, k = 3, s = 20 and λ = 0.0001 : Primal and dual objectives for
SDCA

1.2 Comparison with other algorithms

We compare our SDCA method to a proximal gradient descent method called Iterative Soft

Thresholding (IST) presented in [7], which is a batch method on generated data with n = 100,
k = 3 and s = 20 and λ = 0.015. Figure 4.5 shows the `2 error in function of the number of
visited entries. We remind that SDCA method processes one single training example at each
step while the IST processes all the training dataset at each iteration. Hence one iteration of
SDCA counts as one visited entry whereas one iteration of IST counts as N visited entries,
where N is the number of known ratings. We see that SDCA needs to visit a smaller number
of entries than IST to reach an acceptable solution. Here SDCA reaches an `2 error of 3× 10−3

visiting 300,000 entries (it can visit an entry several times) wheras IST only reaches an `2 error
of 0.3.
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Figure 4.5: results for n = 100, k = 3, s = 20 and λ = 0.015 : `2 error of SDCA and IST in
function of the number of visited entries

Figure 4.6 compares SAG and SDCA on generated data with n = 100, k = 3 and s = 20 and
λ = 0.015. Both are online algorithms but SAG operates on the primal whereas SDCA operates
on a dual. SAG primal objective minimization curve is not necessarily monotone but it tends
to be. Moreover, since the algorithm relies on primal iterations we do not have jumps in primal
objective when alternating. The alternate minimization is visible on the `2 error curve of SDCA.
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Figure 4.6: results for n = 100, k = 3, s = 20 and λ = 0.015 : `2 error of SDCA and IST in
function of the number of visited entries

2 Implementation details

Since we consider a regularized problem we have to �x the regularization parameter λ. If it is
too large, the loss term in the primal objective will be too small compared to the regularization
term and the solution will not �t well the data. On the contrary, when λ is small SDCA shows
slower convergence. A way to adress this issue is to begin the optimization with a large λ and
gradually decrease λ during iterations.

Another issue is how to set a stopping criterion. The duality gaps of the di�erent sub-
problems do not give us information on the general duality gap. In SDCA implementation we
set a duality gap threshold that decreases during iterations. Each time the threshold is reached
we alternate the minimization.

As shown is (3.5), the updates of U depend on V and the updates of V depend on U .
More particularly, if we de�ne A the matrix of dual variables αij and B the matrix of dual
variables βij we have that U = AV /Nλ and V = BU /Nλ. Hence, after a cycle of updates
of U leading to U (t),V (t−1) is no more up to date. We have to update the initial values of V
to a V start = BU (t)/Nλ before starting to optimize the problem on V . Then we obtain V (t)

after optimizing on V from V start. This adds a step between updating cycles that has a cost of
the number of non-zero αij values for processing U start and the number of non-zero βij values
for processing V start.

The dependency between U and V also prevent us to initialize both matrices as zero ma-
trices. Indeed if we initialize at zero we will get stuck in this solution. In our experiments we
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initialize V at random and U = AV /Nλ.

In our tests, we can choose the number of columns of matrices U and V . We have observed
that if we �x a small number of columns we tend to get stuck in a local minimum whereas
when the number is su�ciently large we reach a better optimum. This is natural since when
the number of columns is large we approach the convex problem with trace norm relaxation, as
explained in section 2.3. For all the tests we �x the number of columns to 50.
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Discussion

In SDCA, before each cycle, we have to update the starting point U start or V start. For example,
after optimizing over U we get a U (t) and we update the starting point of the optimization over
V to V start = BU (t)/Nλ. However this staring point is not necessarily better than V (t−1).
In certain cases the primal is degraded, and we observe jumps on primal objective. In this
procedure each time we alternate we can loose optimization work that has already been done in
the last cycle. In future work it would be interesting to �nd ways of addressing this issue.
The initialisation at random matrices is also a speci�city of SDCA, since bi-convexity prevents
us to initialize at zero, which is a stationary point for SDCA. Other methods, like IST start at
zero matrix and take advantage of sparsity.
Future work should also compare SDCA with other algorithms as ADMM and Block Coordinate

Descent (BCD). Some algorithms, as BCD, show good performance when considering the squared
loss, notably because squared loss leads to close form updates. However this is not the case for
other loss functions. It will be interesting to compare SDCA to these methods for other loss
functions.
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Conclusion

During this internship we have addressed the matrix completion problem, and in particular its
bi-convex formulation. We have proposed an online algorithm based on SDCA that performs
updates in a dual. Our preliminary results have shown that for certain. Further work should
continue analysing SDCA performance. ON the other hand, SDCA has also shown some weak-
nesses. Since we do updates on the dual we do not have much control on the primal objective
and some values of λ lead to jumps in primal objective.

We have decided to work on bi-convex formulation but it should be interesting to work on
distributed and stochastic algorithms based on the convex formulation. In particular, [10] and
[9] consider this ideas to solve individual sequences problems and PCA.
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Annexe A

SDCA updates for collaborative �ltering

Problème

Soient {xij} les entrées accessibles de la matrice que l'on cherche Ã compléter. On cherche à
approximer la matrice X par une matrice de rang faible qu'on écrit UV > avec U et V peu de
colonnes, i.e. k colonnes.
Le problème primal en ui (la ligne i de la matrice U) s'écrit :

min
ui∈Rk

∑
j∈Ωi

`ij(uiv
>
j ) +

λ

2
‖ui‖2

On pose wij = uiv
>
j et on rajoute la contrainte wij = uiv

>
j pour tout j ∈ Ωi. Le lagrangien

s'écrit :

L(ui, wij , αij) =
∑
j∈Ωi

`ij(wij) +
λ

2
‖ui‖2 −

∑
j∈Ωi

αij(wij − uiv>j )

=
∑
j∈Ωi

(`ij(wij)− αijwij) +
λ

2

‖ui‖2 +
2

λ

∑
j∈Ωi

αijuiv
>
j



g(αi) = inf
ui,wij

L(ui, wij , αij)

=
∑
j∈Ωi

inf
wij

(`ij(wij)− αijwij) +
λ

2
inf
ui

‖ui‖2 +
2

λ

∑
j∈Ωi

αijuiv
>
j


= −

∑
j∈Ωi

`∗ij(αij)−
1

2λ
‖
∑
j∈Ωi

αijvj‖2

Où `∗ij est la conjuguée de Fenchel de `ij . Pour la perte des moindres carrés `ij(y) = 1
2(xij − y)2

nous avons :
`∗ij(y) = max

t∈R
yt− 1

2
(xij − t)2

Le maximum est atteint pour t tel que y + (xij − t) = 0, i.e. t = xij + y. Donc

`∗ij(y) = yxij +
1

2
y2
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Ainsi le dual s'écrit :

max
αi

−1

2

∑
j∈Ωi

α2
ij −

∑
j∈Ωi

αijxij −
1

2λ
‖
∑
j∈Ωi

αijvj‖2

Update des variables duales αij

Posons

h(∆αij) = −1

2
(αij + ∆αij)

2 − (αij + ∆αij)xij −
1

2λ
‖
∑
j′∈Ωi

αij′vj′ + ∆αijvj‖2

h′(∆αij) = −αij −∆αij − xij −
1

2λ

2
∑
j′∈Ωi

αij′vj′v
>
j + 2∆αij‖vj‖2


= −

(
1 +
‖vj‖2

λ

)
∆αij − αij − xij −

1

λ
〈
∑
j′∈Ωi

αij′vj′ , vj〉

Ainsi on actualise αij de la façon suivante :

αij ← αij + ∆αij

avec ∆αij =

(
1 +
‖vj‖2

λ

)−1
−αij − xij − 1

λ
〈
∑
j′∈Ωi

αij′vj′ , vj〉


Update des variables primales ui, wij

Les conditions ∂L
∂ui

(ui, wij , αij) = 0 et ∂L
∂wij

(ui, wij , αij) = 0 donnent :

ui = − 1

λ

∑
j∈Ωi

αijvj

wij = xij + αij

L'actualisation des variables primales s'écrit :

ui ← ui −
1

λ
∆αijvj

wij ← xij + αij

Duality gap

Loss duality gap

Objectif primal : ∑
j∈Ωi

(`ij(wij)− αijwij)
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Objectif dual :
−
∑
j∈Ωi

`∗ij(αij)

Duality gap : ∑
j∈Ωi

(
`ij(wij)− αijwij + `∗ij(αij)

)
Pour la perte des moindres carrés :

1

2

∑
j∈Ωi

(xij − wij)2 +
1

2

∑
j∈Ωi

α2
ij +

∑
j∈Ωi

αij(xij − wij)

Norm duality gap

Objectif primal :

λ

2

‖ui‖2 +
2

λ

∑
j∈Ωi

αijuiv
>
j


Objectif dual :

− 1

2λ
‖
∑
j∈Ωi

αijvj‖2

Duality gap :
λ

2
‖ui‖2 +

∑
j∈Ωi

αijuiv
>
j +

1

2λ
‖
∑
j∈Ωi

αijvj‖2

Total duality gap

1

2

∑
j∈Ωi

(xij − uiv>j )2 +
λ

2
‖ui‖2 +

1

2

∑
j∈Ωi

α2
ij +

∑
j∈Ωi

αijxij +
1

2λ
‖
∑
j∈Ωi

αijvj‖2

ADMM updates for collaborative �ltering

Problème

Le problème initial s'écrit :

min
ui

1

2

∑
j∈Ωi

(xij − 〈ui, vj〉)2 +
λ

2
‖ui‖2

Nous voulons appliquer l'algorithme ADMM (ref Distributed Optimization and Statistical Learn-
ing via the Alternating Direction Method of Multipliers - Boyd & Parikh) à ce problème. Cet
algorithme combine l'avantage de la décomposition pour SDCA et les garanties de convergence
de la méthode des multiplicateurs. Pour cela nous introduisons de nouvelles variables zji .

min
ui,zi

1

2

∑
j∈Ωi

(
xij − 〈zji , vj〉

)2
+
λ

2
‖ui‖2

s.t. zji = ui ∀j ∈ Ωi
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Nous écrivons le lagrangien augmenté pour ce problème :

Lρi(ui, zi, αi) =
1

2

∑
j∈Ωi

(
xij − 〈zji , vj〉

)2
+
λ

2
‖ui‖2 +

∑
j∈Ωi

αji
> (

zji − ui
)

+
ρi
2

∑
j∈Ωi

‖zji − ui‖
2

L'algorithme ADMM s'écrit comme suit. Il permet d'actualiser chaque variable zji de façon
indépendante.

zji
(k+1)

:= arg min
zji

Lρi(u
(k)
i , zi, α

(k)
i ) (1)

u
(k+1)
i := arg min

ui
Lρi(ui, z

(k+1)
i , α

(k)
i ) (2)

αji
(k+1)

:= αji
(k)

+ ρi

(
zji

(k+1) − u(k+1)
i

)
(3)

Calcul de (1):

∂Lρi(u
(k)
i , zi, α

(k)
i )

∂zji
= −

(
xij − 〈zji , vj〉

)
vj + α

(k)
i − ρiu

(k)
i + ρiz

j
i

= zji

(
ρiIrank + v>j vj

)
− xijvj + α

(k)
i − ρiu

(k)
i

Finalement nous avons la forme explicite de l'actualisation de zji . Nous remarquons que chaque
actualisation nécessite l'inversion d'une matrice de taille rank × rank. rank étant faible nous
pouvons nous permettre cette inversion.

zji
(k+1)

=
(
xijvj − α(k)

i + ρiu
(k)
i

)(
ρiIrank + v>j vj

)−1
(4)

Calcul de (2) :

∂Lρi(ui, z
(k+1)
i , α

(k)
i )

∂ui
= λui − |Ωi|α(k)

i + ρi
∑
j∈Ωi

(
ui − zji

(k+1)
)

Donc,

u
(k+1)
i =

1

λ+ ρi

∑
j∈Ωi

(
α

(k)
i + ρiz

j
i

(k+1)
)

(5)

Les résidus primal r(k)
i et dual s(k)

i sont:

r
(k)
i =

(
z1
i

(k) − uki , ..., z
j|Ωi|
i

(k)
− uki

)
, s

(k)
i = ρi

(
u

(k−1)
i − uki , ..., u

(k−1)
i − uki

)
Et leurs normes au carré sont :

‖r(k)
i ‖

2
2 =

∑
j∈Ωi

‖zji
(k) − uki ‖22, ‖s(k)

i ‖
2
2 == |Ωi|ρ2

i ‖u
(k−1)
i ‖22
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