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Abstract
We consider optimization problems that consist in minimizing a quadratic func-
tion regularized by an atomic norm or an atomic gauge. We propose to solve
difficult problems in this family with a column generation algorithm (Larsson
et al., 2015), which leads to a sequence of quadratic programs with only positivity
constraints that can be solved efficiently with active set methods for quadratic
programming (Nocedal and Wright, 2006; Goldfarb and Idnani, 1983).

1 Introduction

A number of problems in machine learning and structured optimization involve either structured
constraint sets that are defined as the intersection of a number of simple sets or dually, gauges of sets
that are defined as convex hull of either extreme points or of a collection of sets. A broad class of
convex regularizers that can be used to encode a priori knowledge on the structure of the objects to
estimate have been described as atomic norms and atomic gauges by Chandrasekaran et al. (2012).
The concept of atomic norm has found several applications to design sparsity inducing norm for
vectors (Jacob et al., 2009; Obozinski et al., 2011), matrices (Richard et al., 2014; Foygel et al., 2012)
and tensors (Tomioka and Suzuki, 2013; Liu et al., 2013; Wimalawarne et al., 2014).

A number of these atomic norms remain difficult to use in practice because it is in general not possible
to compute the associated proximal operator or even the norm itself at a reasonable cost.

Given a quadratic function f and an atomic norm used as a regularizer γA , we consider in this paper
optimization problems of the form

min
x∈Rp

f(x) + γA(x).

Our main contributions are a simple reformulation of the form taken by the Fully Corrective Frank-
Wolfe (FCFW) algorithm for the regularized case and the proposal to solve the reduced problem in
FCFW with a dedicated active-set algorithm for quadratic programming.

2 Gauges

Given a collection of atoms A, an atomic gauge γA is the gauge of the set CA defined as the convex
hull of A ∪ {0}. It can be shown that (in a finite dimensional space) γA(x) = inf{∑a∈A ca ∣ c ∈
R+,∑a∈A caa = x}. The polar gauge has the simpler expression γ○A(s) = supa∈A⟨s, a⟩.

For a number of atomic gauges, we have A = ⋃
J
j=1Cj where Cj are convex sets. Then, γ○A(s) =

maxj γ
○
Cj

and γA = γC1 ◻ . . . ◻ γCJ
where ◻ denotes the infimal convolution1 with f ◻ g(x) =

infy f(x − y) + g(y). We thus have γA(x) = inf{γC1(z1) + . . . + γCJ
(zJ) ∣ z1 + . . . + zJ = x}.

A natural example of a gauge defined as an infimal convolution is the Latent Group Lasso (LGL)
norm (LGL) introduced in Jacob et al. (2009); Obozinski et al. (2011). Given a collection of sets B,

1The infimal convolution is clearly commutative and associative.
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the polar LGL norm is defined as Ω○
LGL(s) = maxB∈B δ−1B ∥sB∥2 where sB denotes the subvector of

s whose entries are indexed by a set B and δB ∈ R∗
+. Defining AB ∶= {x ∣ xBc = 0, δB∥x∥2 = 1}, we

have that ΩLGL = γA is the infimal convolution of all the gauges (γCB
)B⊂B, with A = ⋃BAB and

CB the convex hull of AB . In particular, we have {s ∣ Ω○
LGL(s) ≤ 1} = ⋂B C

○
B with C○

B the cylinder
C○
B = {s ∣ ∥sB∥2 ≤ δB}.

3 Column generation algorithm
Algorithm 1 Column generation

1: Require: f convex differentiable, ε
2: Initialisation: x0 = 0, A0 = ∅,
3: k0 = 0, t = 1
4: repeat
5: at ← arg maxa∈A⟨−∇f(xt−1), a⟩
6: At ← [At−1, at]
7: ct ← arg minc≥0 f(Atc) + ∥c∥1
8: I ← {i ∣ cti > 0},
9: At ← At⋅,I

10: xt ← Atct

11: t← t + 1
12: until maxa∈A⟨−∇f(xt−1), a⟩ ≤ ε

For many of these norms, it is possible to compute
argmaxa∈A⟨a, s⟩. This has motivated a number of au-
thors to suggest variants of the conditional gradient
algorithm, also known as the Frank-Wolfe (FW). Main
variants of conditional gradient are presented in Lacoste-
Julien and Jaggi (2015). In Rao et al. (2015), a FCFW
version with backward steps is applied to the constrained
problem. Our problem can easily be reformulated as a
truncated cone constrained problem as suggested by Har-
chaoui et al. (2015),

min
x,τ

f(x) + λτ s.t. γA(x) ≤ τ, τ ≤ ρ, (1)

where one variable τ is added and a truncation level
ρ that can be specified a priori as an upper bound on
γA(x⋆) for x⋆ a solution of the problem.

The form of different Frank-Wolfe variant actually do not depend on the value ρ provided it is
sufficiently large. Moreover, it is possible to show that applying FCFW on the truncated cone
formulation above is equivalent to the simple column generation algorithm2 presented in Algorithm 1.
At each iteration, a new atom is added and we solve the original problem on the subset of atoms
being considered. Since γAt(x) = inf {∥c∥1 ∣ c ∈ Rt+, x = ∑

t
i=1 ciai}, the subproblem considered at

the t-th iteration is
min
c∈Rt

+

f(Atc) + λ∥c∥1, with At ∶= [a1, . . . , at] ∈ Rp×t. (2)

If f is quadratic, the problem is a Lasso problem with positivity constraints, which can efficiently be
solved by a number of algorithms.

4 Active-set algorithm for quadratic programming

We propose to use active set algorithms for convex quadratic programming (Nocedal and Wright,
2006; Forsgren et al., 2015; Goldfarb and Idnani, 1983) . In particular, following3 Bach (2013,
Chap. 7.12), we propose to apply the active-set algorithm of Nocedal and Wright (2006, Chap. 16.5)
to solve iteratively (2) . This algorithm takes the very simple4 form of Algorithm 2. In fact, as noted
in Bach (2013, Chap. 9.2), this algorithm is a generalization of the famous min-norm point algorithm
(Wolfe, 1976), the latter being recovered when the Hessian is the identity. In our active-set algorithm
the iterates always remain dual feasible. Either the new iterate is primal-dual feasible — in which
case we perform a full-step and potentially a new violated constraint is subsequently added— or
not — and other constraints are added until we obtain an iterate that is primal-dual feasible for the
subproblem. The solution is obtained when all constraints are satisfied.

For sparse problems, if the iterates remain in a low dimensional space, the theorem of Carathéodory
guarantees that the simplex, i.e. the number of active atoms for us, remains small. This explains the

2In Harchaoui et al. (2015) a similar algorithm is proposed but without that a clear equivalence with FCFW
on the truncated cone is stated.

3Bach (2013) proposed to use this active-set algorithm to optimize convex objectives involving the Lovász
extension of a submodular function.

4Despite the fact that, in the context of a simplicial algorithms, the polyhedral constraints sets of (2) as convex
hulls, the algorithm of Nocedal and Wright (2006, Chap. 16.5) actually exploits their structure as intersections of
half-spaces, and thus the active constraints of the algorithm actually correspond counter-intuitively to dropped
atoms.
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efficiency of the algorithm, since the matrices to invert remain small. In our experiments, thanks to
warm-starts, a very small number of pivots (full steps or drop steps of algorithm 2) are necessary in
the active-set method, usually one or two pivots.

In order to apply the active-set algorithm, the subproblem (2) is explicitly rewritten as a quadratic
problem with objective valuec⊺Htc + btc, where the Hessian Ht and bt are updated each time a new
atom is added. In the active-set, every time a constraint is added or removed, we have to invert a new
Hessian to solve the subproblem. Fortunately, these operations translate into rank one updates on the
Hessian and its inverse.

5 Experiments
Algorithm 2 [c, J]=AS(H, b, c0, J0)

1: Solves: P ∶= minc≥0 c⊺Hc + b⊺c
2: Initialisation: c = c0 , J = J0,
3: repeat
4: d←HJ,J

−1bJ
5: if d ≥ 0 then
6: c← d ▷ full-step
7: g ←Hc + b
8: k ← arg mini∈J0/J gi
9: if gk ≥ 0 then

10: break
11: else
12: J ← J ⋃{k}
13: end if
14: else
15: K ← {i ∣ ci−di > 0, di < 0}
16: i∗ ← arg mini∈K ci

ci−di
17: τ ←

ci∗
ci∗−di∗

18: J ← J \ {i} ▷ drop-step
19: c← c + τ(d − c)
20: end if
21: until gJ0/J ≥ 0
22: return c, J

In this section, we report experimental results to illus-
trate the computational efficiency of the proposed algo-
rithm. We consider linear regression problems of the form
minx

1
2
∥Xw − y∥2 + λγA(w) where X is a design ma-

trix and γA the LGL. We also considered the constrained
version for LGL. We compare our algorithm with the vari-
ants of Frank-Wolfe and with forward-backward greedy
algorithm (COGEnT) of Rao et al. (2015) on simulated
data. We also provide a comparison with FCFW with an
interior-point solver on larger scale simulated data. Un-
reported comparisons5 with the block coordinate descent
algorithms of Jacob et al. (2009) on the similar data show
that it is quite slow.

k-chain Lasso We consider an LGL regularization
where the groups are chains of continuous indices of
length k = 8, that is where the collection of group is
B = {{1, . . . , k},{2, . . . , k + 1}, . . . ,{p − k + 1, . . . , p}}.
We choose the support of the parameter w0 of the model
to be {1, . . . ,10}. Hence, two or three overlapping groups
are typically non-zero at the solution for appropriate
regularization levels. We generate n = 300 examples
(yi)i=1,..,n from y = x⊺w + ε where x is a standard Gaus-
sian vector and ε ∼ N(0, σIp). In the left plot of Figure 1
we show a time comparison on the regularized problem. We implemented Algorithm 1 and three
Frank-Wolfe versions along the lines of Harchaoui et al. (2015): simple FW, FW with line search and
pairwise FW. We compare also with a regularized version of the forward-backward greedy algorithm
of Rao et al. (2015). In the right plot of Figure 1 we show a comparison on the constrained problem.
We coded constrained versions of the aformentioned methods, except for forward-backward greedy
algorithm for which the code was available. We clearly outperform all contending methods.

Weak hierarchical sparsity In high-dimensional linear models that involve interaction terms,
statisticians usually favor variable selection obeying certain logical hierarchical constraints. The
Weak Hierarchical (WH) sparsity constraints (see Bien et al., 2013, and reference therein) are that if
an interaction is selected, then at least one of its associated main effects should be selected. We use
the latent overlapping group Lasso formulation proposed in Yan and Bien (2015) to obtain a convex
formulation inducing WH sparsity.

The corresponding collection of groups B thus contains the singletons {i} and contains for all pairs
{i, j} the sets {i,{i, j}} and {j,{i, j}} (coupling respectively the selection of βij with that of βi
or that of βi). We consider a quadratic problem with p = 50 main features, which entails that we
have p× (p − 1)/2 = 1225 potential interaction terms. We choose the parameter β to have 10% of the
interaction terms βij equal to 1 and the rest equal to zero. We simulated a sample of size n = 1000.

We compare our algorithm with FCFW combined with an interior point solver (FCFW-ip) instead
of the active-set subroutine. We also show that our method takes advantage of warm starts. See

5We did not add the plot of BCD because the code of Jacob et al. (2009) is written for a model with intercept
term.
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Figure 5 for a time comparison with FCFW-ip and our method without warm starts. Note that we use
the IP solved implemented under the function quadprog in MATLAB, which is an optimized C++
routine, whereas the implementation of our active set algorithm is done in plain MATLAB. Clearly,
an optimized C implementation of our active-set algorithm would provide an additional significant
speedup. To give a better idea of the improvement brought over interior points methods, Figure 5
shows the number of matrix inversions per size of the matrix. The interior point solver requires 6-7
times more matrix inversions than the active-set algorithm we propose to use for most of the iterations
of the algorithm.
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Figure 1: Experiments for LGL with f(w) = 1/2∥Xw − y∥2, where X is a Gaussian random design
matrix. The noise level is chosen to be σ = 0.1: log-log plot of the duality gap as a function of
computation time. (Left) Regularized problem with λ = 5; (right) Constrained problem with ρ = 5.
FW: Frank-Wolfe, FWls: line search FW, FWpw: pairwise FW, CoGEnT: greedy forward-backward
algorithm with truncation parameter η = 0.5, colgen: our algorithm with warm-starts.
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Figure 2: Experiments on simulated data for WH sparsity, with p = 50 main features and p ×
(p − 1)/2 = 1225 possible interactions among which 10% are true interactions. (Left) log-plot of the
decrease of the duality gap as a function time in seconds for FCFW-ip, our algorithm with and without
warm-starts (ws) in the active-set algorithm. (Right) Number of matrix inversions for FCFW-ip
divided by the number of inversions in our method per size of the matrix.

6 Conclusion
In this paper, we have shown that to minimize quadratic function with an atomic gauge regularization
or constraint, the FCFW algorithm, which corresponds exactly to a very simple column generating
algorithm in the regularized case that is not well known, is particularly efficient given that sparsity
make the computation of reduced Hessian relatively cheap. In particular, we showed that the corrective
step is solved very efficiently with a simple active-set methods for quadratic programming. The
proposed algorithm takes advantage of warm-starts, and empirically outperforms other Frank-Wolfe
schemes and the algorithm of Rao et al. (2015). The performance of the algorithm could be further
enhanced by low-rank updates of the inverse Hessian.
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